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Abstract

This article investigates a method for obtaining all equilibrium configurations of a cantilever beam subjected to an
end load with a constant angle of inclination. The formulation is based on plane finite-strain beam theory in the elastic
domain. An example of a cantilever beam subjected to a horizontal pressure force is discussed in detail.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The determination of equilibrium shapes of a cantilever beam subjected to concentrated end loads is one
of the oldest problems of elastomechanics. This problem was investigated by Jacob Bernoulli (1705) and
later by Leonhard Euler in his treatise on elastic curves (1744) (see, Love, 1944). Assuming that the curva-
ture of the beam is proportional to the bending moment, Euler derived a differential equation for the de-
formed shape of the beam and solved it with the use of an infinite series. Euler also classified all possible
equilibrium states (see, Antman, 1995). Further solutions were obtained by means of elliptic functions and
can be found in the relevant literature (e.g., Landau and Lifshitz, 1986; Love, 1944). Recently a method
based on a numerical solution of elliptic integrals that enables the determination of all equilibrium config-
urations at a given load was developed (Navaee and Elling, 1992).

Some authors (Pai and Palazotto, 1996; Saje, 1990, 1991) dealt with the determination of equilibrium
configurations considering the final extension and shear strain; however, the aim of these papers was not
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the determination of all configurations, rather just a study of theoretical origins and/or numerical or ana-
lytical methods.

The aim of this paper is to propose a relatively simple numerical method, enabling the determination of
all equilibrium configurations (shapes) of a cantilever beam with known geometric and material parameters
and at a given load.
2. Basic equations

A cantilever beam of length L with constant extension EA, shear GAs and bending stiffness EI, which is
subjected to an inclined constant force F P 0 at its free end, will be discussed (Fig. 1).

The problem will be formulated by means of the finite-strain beam theory (Antman, 1995; Reissner,
1972). According to this theory the deformed state of the discussed beam is defined by the following equa-
tions in a non-dimensional form
dx
ds

¼ ð1þ eÞ cosu � g sinu
dy
ds

¼ ð1þ eÞ sinu þ g cosu ð1Þ

du
ds

¼ j
dj
ds

¼ �x2 sin/ 1þ m
x2

k2
cos/

� �
ð2Þ
where s 2 [0, 1] is a parameter, x and y are the coordinates of a point on the beam�s axis, uis the angle of
inclination of the cross-section with respect to y axis, / = u � a and j is the bending strain of the beam.
The extension strain e and the shear strain c are determined with
e ¼ � 1

2
ð1� mÞx2

k2
cos/ c ¼ 1

2
ð1þ mÞx2

k2
sin/ ð3Þ
Non-dimensional parameters x,k,m used in (2) and (3) are defined as follows
x2 ¼ FL2

EI

1

k2
¼ 1

k2
T

þ 1

k2
S

m ¼ k2
T � k2

S

k2
T þ k2

S

ð4Þ
where 1
k2T
¼ EI

L2EA
and 1

k2S
¼ EI

L2GAs
. It is seen from (4) that the values of parameter m are restricted to the interval

[�1,1]. For m = �1 the beam allows no shear strain, while for m = 1, it allows no extension strain. It has to
be mentioned that the elastica is not defined by the condition m = 0, but by 1/k = 0.

Eqs. (1) and (2) can be solved together with boundary conditions. In the discussed case the boundary
conditions have the following form
xð0Þ ¼ yð0Þ ¼ 0 ð5Þ

/ð0Þ ¼ �a jð1Þ ¼ 0 ð6Þ
x

y

F

L

α

Fig. 1. Undeformed state of a cantilever beam.
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Because of the fact that a portion of the beam cannot be deformed into a single point and the shear strain
cannot have such values that could lead to overlapping of the cross-sections and the axis of the beam, it has
to be stressed that e is limited by 1 + e > 0. Together with the first expression of (3), this restriction implies
x
k
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1� mÞj cos/minj

s
ð7Þ
where /min ¼ min /̂ðsÞ; s 2 ½0; 1	.
3. Solution

The form of Eqs. (1) and (2) and boundary conditions (5) and (6) suggests that Eq. (2), which have to
fulfil the conditions (6), can be solved independently of Eq. (1). The second set of boundary conditions (6)
defines a two-pointed boundary problem, which can be solved by means of Picard�s shooting method (Ant-
man, 1995; Ascher et al., 1995; Forsythe et al., 1977). The idea of the method is the following: consider
j ¼ ĵðs; j0Þ as a solution of (2) at the initial value j0 ¼ ĵð0Þ. The solution must fulfil the boundary condi-
tion (6), thus the following non-linear equation is obtained
ĵð1; j0Þ ¼ 0 ð8Þ

which gives j0. A good initial guess is usually required to solve (8). The solution can consequently be ob-
tained by iteration. However, the described method is not appropriate if all equilibrium configurations of a
cantilever beam with known geometric and material parameters and at a given load are to be obtained.
The search for initial values and iterations can be avoided by useing the following algorithm, which con-
verts the two-pointed boundary problem to the problem of initial values (Faulkner et al., 1993; Lipsett
et al., 1993):

• at given values x,k,m,a the function j ¼ ĵð1; j0Þ is tabulated for j0 2 [�j0max,j0max] so that the prob-
lem of initial values (2) is solved with conditions /(0) = �a and j(0) = j0;

• from the tabulated value j ¼ ĵð1; j0Þ those intervals are eliminated, where j ¼ ĵð1; j0Þ changes its sign;
• at the obtained intervals zeros ĵð1; j0Þ ¼ 0 are calculated by means of the secant method;
• for every zero a numerical solution of the problem of initial values (1) and (2) is obtained.

A computer program was written in accord with the described algorithm, which includes the subroutine
rkf45 with the parameters abstol = reltol = 10�9 for solving the problem of initial values and the
subroutine zeroin with the parameter tol = 0.0 for calculating zeros (Forsythe et al., 1977).

The range of values j0 2 [�j0max,j0max], where zeros of Eq. (8) are searched for, can be estimated by
means of the first integral of the system (2). The estimated values are:

• for m x2

k2
< 1
jj0j 6 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cos aÞ � m

x2

k2
sin2a

s
ð9Þ
• for m x2

k2
P 1
jj0j 6
kffiffiffi
m

p 1þ m
x2

k2
cos a

� �
ð10Þ
It can be noted that the second value can occur only in the case when m > 0 (i.e., when EA > GAs).
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Fig. 2. Bending strain at the free end versus bending strain at the clamped end.
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An example of the tabulated values of j ¼ ĵð1; j0Þ is shown in Fig. 2. It can be established that the func-
tion j ¼ ĵð1; j0Þ leaps sharply in the vicinity of ±j0max (i.e., there are two zeros in the vicinity of that
point). For example, in the case of elastica (for the values x = 15 and a = 90�) the zeros lie in the interval
of 0.01, while for a = 0� they lie in the interval of 0.027. Via numerical trials the minimum number of inter-
vals, which covers the region [�l0max,l0max] in such a manner that all zeros are enclosed, was determined
as 5:3 expð x

1:5
Þ.
4. Examples

As the first example, the case of elastica for a = 0 and a = p/2 will be analyzed. Because this case implies
1/k = m = 0, the number of possible solutions can be illustrated using the bifurcation diagram showing the
function j0 ¼ ĵ0ðxÞ, in which the bifurcation points and the number of possible equilibrium shapes at dif-
ferent values x can be seen. The diagram is shown in Fig. 3 and was constructed using the algorithm by
calculating the zeros of ĵð1; j0Þ ¼ 0 for diferent values of x.

It can be established that the number of solutions (equilibrium shapes) increases with the load parameter
x. For example, x = 15 a = 0 provides 11 solutions and a = p/2 provides 9. The corresponding shapes for
the examples are shown in Fig. 4. Furthermore, the diagrams show that in the case of a = 0 (as opposed to
the case of a = p/2), a trivial solution exists and non-trivial solutions are symmetrical.

Other authors (Navaee and Elling, 1992) have used a = 45�, x = 8 and a = 45�, x = 9.325 for the elas-
tica, obtaining the corresponding equilibrium shapes shown in Fig. 5.

A second example, a test of accuracy of the proposed algorithm by comparing its results to those ob-
tained by Saje, who used the finite element method (Saje, 1991), for a cantilever with a = 90�, F = 10,
L = 1, EA = 1021, EI = 10 and various GAs was performed. Also an additional comparison with the use
of the collocation method implemented in subroutine colnew was made (Ascher et al., 1995). A driver pro-
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Fig. 3. Bifurcation diagrams for the elastica in the case of a = 0 (left) and a = p/2 (right). The integers correspond to solution branches
that give particular equilibrium shapes.
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Fig. 4. Equilibrium shapes of an elastica for x = 15: a = 0�, (left), a = 90� (right).
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gram and appropriate subroutines were written for this purpose, which implemented Eqs. (1) and (2) and
boundary conditions (5), (6). Since all the cases have only one solution branch, no initial guess subroutine
was provided for colnew. The error tolerance was set to 10�11 for all variables. The comparison of all re-
sults is given in Table 1.

The results obtained by rkf45 and colnew are identical to those obtained by Saje up to at least 5 dec-
imal places. A direct comparison of the results produced by rkf45 and colnew show concordance up to 6
decimal places. The discrepancy at the 8th decimal place was observed only in cases GAs = 10 and GAs = 5.

As the third example, a cantilever beam subjected to a horizontal pressure force (i.e., a = 0) will be ana-
lyzed in detail. As in the case of elastica, the number of equilibrium shapes can be calculated by this algo-
rithm, but the function j0 ¼ ĵ0ðx; k; mÞ should be investigated first. It can be determined that in this case /
(0) = 0; thus on the basis of (7) meaningful solutions are only obtained under the condition
Table
A com
EA =

GAs

5.00E

500

50

10

5

x
k
<

ffiffiffiffiffiffiffiffiffiffiffi
2

1� m

r
ð11Þ
Fig. 6 shows graphic representations of areas determined by (11) and the condition x=k > 1
ffiffiffi
m

p
, which

defines the validity of (10).
Because the discussed boundary problem always has a trivial solution /(s) = j(s) = 0, its bifurcation

points in the vicinity of the trivial solution correspond to the bifurcation points of the linearized problem.
The bifurcation points are then defined with the equation
mx4=k2 þ x2 � x2
n ¼ 0 xn ¼ p=2þ np ðn ¼ 0; 1; 2; . . .Þ ð12Þ
1
parison of the results of calculated components of displacement u and m at the free end of a cantilever for a = 90�, F = 10, L = 1
1021, EI = 10 obtained by rkf45, colnew and Saje (1991)

u m

rkf45 colnew Saje rkf45 colnew Saje

+20 0.05643324 0.05643324 �0.05643 �0.30172077 �0.30172077 0.30172

0.06131566 0.06131566 �0.06132 �0.31781387 �0.31781387 0.31781

0.10328492 0.10328492 �0.10328 �0.46541330 �0.46541330 0.46541

0.25213661 0.25213661 �0.25214 �1.16709588 �1.16709590 1.16710

0.37612140 0.37612140 �0.37612 �2.10408747 �2.10408750 2.10409



-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

31/2

1/3

EA > GAs

EA < GAs

ω
/λ

ν

Fig. 6. Intersection of areas x=k > 1=
ffiffiffi
m

p
, and x=k <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� mÞ

p
.

M. Batista, F. Kosel / International Journal of Solids and Structures 42 (2005) 4663–4672 4669
A graphic representation of Eq. (12) for the limit cases m = �1, m = 1 and for various values of n (to-
gether with shaded areas reflecting inequalities (10) and (11)) is shown in Fig. 7. It can be seen that the
behaviour of the beam is highly dependent on parameter m. For a given value of k, when m = 1, it can also
be observed that the number of solutions is unlimited; while for m = �1 the number of solutions is depen-
dent on k. In general, the turning points of (12) have coordinates x ¼

ffiffiffi
2

p
xn and k ¼ 2xn

ffiffiffiffiffiffi
�m

p
, so values of

k have a lower limit for m < 0 and at a given n. The least value of k is in this case n = 0, so there are no non-
trivial solutions for k < p

ffiffiffiffiffiffi
�m

p
, while for k > p

ffiffiffiffiffiffi
�m

p
the number of solutions increases. Consequently,

by taking (11) into consideration for m < 0, the values of k are for a given x limited by k >

maxðp
ffiffiffiffiffiffi
�m

p
;x

ffiffiffiffiffiffi
1�m
2

q
Þ. For m > 0 (12) has no turning points, so the values of k are for a given x bounded only

by (11); i.e., one has k > x
ffiffiffiffiffiffi
1�m
2

q
.
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Before proceeding to specific examples, the point should be made that Eq. (12) does not present all the
bifurcation points. For example, in Fig. 8, which represents the bifurcation diagram for k = 10 and m = �1
two additional bifurcation points with coordinates (5.6478 ± 4.3988) exist.

The first example has the parameters x = 5.7, k = 10, and is shown in Fig. 9. In the case m = �1 (accord-
ing to the bifurcation diagram in Fig. 8) seven equilibrium shapes are obtained, while for m = 0 five equi-
librium shapes occur.

The second example has the parameters k = 5,m = 1 and defines a cantilever beam that allows no exten-
sion strain. Its equilibrium shapes are shown in Figs. 10–12. For x = 4 five, for x = 6 seven and for x = 9
thirteen equilibrium shapes are obtained.

For the purpose of numerical comparison calculated values of j0 and calculated values of variables at
the free end for the first example (left example in Fig. 9, Table 2) and for the second example (Fig. 12, Table
3) are given. Because the solutions are symmetrical, only the first four solutions for the first example and the
first seven for the second example are given. The variable s+ in the tables represents the length of the de-
formed beam, which is obtained with the integration of equation
dsþ

ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ eÞ2 þ c2

q
sþð0Þ ¼ 0 ð13Þ
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It can be noted that the values of j0 in the first and second row in Table 3 are very close and that the
value of ĵð1; j0Þ in the first row is accurate only at two decimal places. These values correspond to shapes 1
and 2 in Fig. 12.



Table 2
The calculated values of variables for a = 0�, x = 5.7, k = 10, m = �1

j0 x1 y1 /1 ĵð1; j0Þ s+ 1 + e1

1 �11.399680 �0.920963 �0.350867 �3.128565 0.000001 1.216300 1.324872

2 �6.307238 0.459807 �0.194129 1.334342 0.000000 0.804732 0.923890

3 �2.415322 0.650371 �0.074340 0.513525 0.000000 0.696150 0.717006

4 0.000000 0.675100 0.000000 0.000000 0.000000 0.675100 0.675100

Table 3
The calculated values of variables for a = 0�, x = 9, k = 5, m = 1

j0 x1 y1 /1 ĵð1; j0Þ s+ 1 + e1

1 �21.200000 �3.049771 �0.261749 �1.884455 0.001633 3.185312 1.000000

2 �21.197194 �2.668575 �0.261694 1.862258 �0.000001 3.075509 1.000000

3 �21.021542 �2.247130 �0.259525 �1.710450 0.000000 2.943451 1.000000

4 �20.005497 �1.656486 �0.246981 1.446047 0.000000 2.717856 1.000000

5 �17.181012 �0.789141 �0.212111 �1.095035 0.000000 2.319023 1.000000

6 �10.210749 0.415995 �0.126059 0.576800 0.000000 1.579974 1.000000

7 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 1.000000
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5. Conclusion

The results show that the proposed numerical method is suitable for the determination of all equilibrium
configurations of a cantilever beam by means of finite-strain beam theory. It is shown how the introduced
material parameters k,m and the load parameter x influence the number of equilibrium configurations. Un-
like in the case of elastica, for which the number of equilibrium shapes is dependent on x, it is demonstrated
that in the case of finite strain for m < 0 values k exist, for which the beam has only a single (output) shape
irrespective of x. The numerical results can be used as comparative values when testing the accuracy of var-
ious numerical methods in elasticity.
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